
IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

1

I33 Application Data Sharing with z/OS Shared Memory

Detlef Dewitz
DEFObonn GmbH, Bonn, Germany

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

2

Introduction

● Preliminary notes
– All informations and samples are based on z/OS 1.7
– z/OS 1.9 has some new functions and parameters which are

not discussed in this session
– This session offers an introduction to the subject of application

data sharing. Hence, not all details will be discussed.

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

3

1. Needs

What may be your needs ?

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

4

1.1 Case 1 – Live Monitoring

● A live monitoring program
shall keep track of the
processing status of your
applications

● This can be i.e.
– TSO/ISPF applications
– Batch Jobs
– IMS Jobs
– Web applications
– ...

● You cannot use online
databases!

program A

Batch Job A

program B

IMS Region Job B

IMS Region Job C

program C

status data A

status data B

status data C

monitoring
program

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

5

1.2 Case 2 – IMS Conversational Workflow

● A workflow of conversational
IMS transactions, i.e. results
of tran A are needed by the 2nd
following tran C
– Results are to be buffered

in the SPA (or database,
if data size > SPA size)

– Tran B – in the middle –
has to process data in SPA
although not needed

– Large data sizes cost a lot
of MIPS for compression
and database i/o

tran A

tran B

tran C

result data A

result data A+B

result data C

spa database

spa database

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

6

1.3 Case 3 – Web Application with a huge Result Set

● A web application triggers a
IMS transaction

● The IMS transaction creates
a huge result set

● This result set shall be
displayed by the web
application now or later

tran A

web application

huge
result
set

tri
gg

er
s

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

7

1.4 Case 4 – A Global Repository for Temporary Data

● Instead of single solutions for
each application think also
about ...

● ... a global repository for all
your needs which
– fits all sizes of data
– is key based
– uses heap based

algorithms
– includes garbage collection
– includes time based

expirations

program A

web application

Global repository

status data A

monitoring
program

tran B result set B

PUT
key=“A“

PUT
key=“B“

GET
key=“A“

GET
key=“B“

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

8

1.5 Case 5 – IMS Database Cache

What have we
done in our
project ?

● One of the project's databases contains
images of cobol working storage sections
for read only purposes

● IMS reporting showed that this database
– was 2nd off most used IMS databases in

the daytime
– GU/GN were 99,9 % of the IMS calls
– was used by a lot of transactions (MPP

and BMP)

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

9

1.5.1 Case 5 – IMS Database Cache

Preconditions ● All IMS calls of the applications are
encapsulated in one global sub-module.

● This global sub-module is written in
assembler

● Updates to this database occur once or
twice per week

● Database contains different versions of the
working storage images

● One version of the image contains data of
about 40 MB

● 1-2 IMS systems per LPAR in production
● 1-7 IMS systems per LPAR in development

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

10

1.5.2 Case 5 – IMS Database Cache

Objectives ● Decrease of MIPS
● Decrease of IMS calls
● Caching of the working storage images in

main storage
● Only one cache per image per IMS system
● No changes in the applications except for

the global sub-module
● Caches must be manageable in production

and development

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

11

2. Problems

What are the problems ?

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

12

2.1 Problem S0C4

● A non APF authorized
program is not allowed to read
or write data outside its own
address space

● If anyhow a program tries to
access another address
space, the program will be
interrupted with system abend
0C4

non-APF Job A

programm
code

data

Job B

S0C4

z/OS LPAR

program
code

program
code data

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

13

2.2 Problem APF Authorization

● APF authorization of the
program will master the S0C4
problem, but ...

● Programming is tricky ...
● All libraries of your

steplib/joblib concatenation
have to be authorized ...

● Your ITO will usually not allow
authorizing your standard
application

program
code data

APF Job A

program
code data

Job B

O.K.

z/OS LPAR

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

14

3. IPC concept

The Inter-Process Communication
(short IPC)

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

15

3.1 IPC Definition of wikipedia.org

● Inter-Process Communication (IPC) is a set of techniques for the
exchange of data among multiple threads in one or more
processes....

● Processes may be running on one or more computers connected
by a network....

● IPC techniques are divided into methods for message passing,
synchronization, shared memory, and remote procedure calls
(RPC)....

● The method of IPC used may vary based on the bandwidth and
latency of communication between the threads, and the type of
data being communicated....

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

16

3.2 IPC on z/OS

● IPC is part of OMVS (POSIX compatible UNIX)
● Processes (TSO-sessions, Jobs, IMS-TRX) of one LPAR
● IPC techniques are divided into methods for

– shared memory
– synchronization
– message passing (not dicussed in this presentation)

● Remote procedure calls (RPC) are not yet supported

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

17

3.3 IPC diagram

● IPC has rights of user 'root',
so no extra APF authorization
is neccessary

● IPC methods can called from
the MVS address room using
– XL C/C++ runtime library

functions
– Assembler unix system

services

MVS OMVS
z/OS

IPC

Shared memory
Semaphores

Messages

Unix System
services

XL C/C++ runtime
library functions

application

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

18

4. IPC tools

How to control IPC

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

19

4.1 Clist BPX

A little clist helps ...

<userid>.user.clist(bpx)

/* REXX */
PARSE ARG COMMAND
"ALLOC DD(STDIN) DUMMY REUSE"
"ALLOC DD(STDOUT) DA(*) REUSE"
"ALLOC DD(STDERR) DA(*) REUSE"

EXITRC = BPXWUNIX(COMMAND,'DD:STDIN','DD:STDOUT','DD:STDERR','0')
EXIT(EXITRC)

ATTENTION:
You cannot use this clist at any ISPF screen,
because OMVS commands are case sensitive

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

20

 ISPF Command Shell
Enter TSO or Workstation commands below:

 ===> %bpx nslookup www.ims-society.org____________________

4.1.1 Clist BPX - Example

... entering a OMVS command from TSO/ISPF 6.

Server: localhost
Address: 127.0.0.1
 Non-authoritative answer:
Name: www.ims-society.org
Address: 192.67.198.56
Defaulting to nslookup version 4
Starting nslookup version 4

http://www.ims-society.org/
http://www.ims-society.org/

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

21

4.1.2 Clist BPXSPOOL

In a batch job try this ...

<userid>.user.clist(bpxspool)

/* REXX */
PARSE ARG COMMAND
EXITRC = BPXWUNIX(COMMAND,'DD:STDIN','DD:STDOUT','DD:STDERR','0')
EXIT(EXITRC)

Jobcards

//UNIX EXEC PGM=IKJEFT01,PARM='BPXSPOOL ps -Aj'
//SYSEXEC DD DISP=SHR,DSN=<USERID>.USER.CLIST
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDIN DD DUMMY

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

22

4.2 OMVS command ipcs

● The command ipcs retrieves status information about active
 IPC objects
ipcs -a

● Shows all active message queue, shared memory and semaphore objects
ipcs -q

● Shows all active message queues
ipcs -m

● Shows all active shared memory segments
ipcs -s

● Shows all active semaphore sets
ipcs -w

● Shows message queue wait status and semphore adjustment status
man ipcs

● shows help description for command ipcs

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

23

4.3 OMVS command ipcrm

● The command ipcrm removes an IPC objects
ipcrm -q msgid
ipcrm -Q msgkey

● Removes an active message queue with the associated msgid or msgkey
ipcrm -m shmid
ipcrm -M shmkey

● Removes an active shared memory segment with the associated shmid or
shmkey

ipcrm -s semid
ipcrm -S semkey

● Removes an a active semaphore set with the associated semid or semkey
man ipcrm

● Shows help description for command ipcrm

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

24

4.4 OMVS command ps

● The command ps returns the status of an OMVS process
ps -A
ps -Aj

● Shows all active processes associated with an OMVS process id
man ps

● Shows help description for command ps

● If you are looking for a specific process you can filter the output
using grep, i.e.
ps -A | grep 4711

● where 4711 is the process id you are looking for

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

25

5. IPC Shared Memory

IPC Shared Memory

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

26

5.1 IPC Shared Memory Diagram

Shared memory segments
● 64 bit address space:

– Multiple of 1 gigabyte
segments

– The address is fixed to all
● 31 bit address space:

– Sizes < 1 megabyte
– Multiple of 1 megabyte

segments
– The address is a virtual

0
z/OS address space

224

264

231

shm segment C
shm segment D

shm segment A

shm segment B

shm segment C
shm segment D

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

27

5.2 IPC SHM methods

● shmget - Get a Shared Memory Segment
– Creates a new shm segment and returns it's ID
– Gets the ID of an existing segment

● shmat - Shared Memory Attach Operation
– Attaches the shared memory segment associated with the ID to the application

address space

● shmdt - Shared Memory Detach Operation
– Detaches from the applications address space the shared memory segment located

at the given address

● shmctl - Shared Memory Control Operations
– Obtains status information
– Changes permissions
– Removes a shared memory segment

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

28

5.3 IPC SHM steps

● Steps

1. Define an identifying 4 byte key
shmkey=0x00004711

2. Create a shared memory
shmid = semget (shmkey, size, IPC_CREAT)

3. Attach the shared memory to your address space
buffAddr = shmat (shmid)

5. Do your work
6. Detach the shared memory from your address space

rc = shmdt (buffAddr)

7. Delete the shared memory segment permanently
rc = shmctl (shmid, IPC_RMID)

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

29

5.3.1 SHM sample program EMEA0001 page 1

EMEA0001.C
#define _XOPEN_SOURCE
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#define SHM_KEY 0x00004711
#define SHM_MODE 0777
#define BUFFER_SIZE 1023
typedef struct buffer_t {
 int counter;
 int data [BUFFER_SIZE]; /* The buffer which holds the data. */
} buffer_t;
unsigned int sharekey = SHM_KEY;
unsigned int size = sizeof (struct buffer_t);

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

30

5.3.2 SHM sample program EMEA0001 page 2

int main (int argc, *argv []) {
 buffer_t *buffer;
 int shmid, i, rc;
 system ("%bpx ipcs -a");
 /* Create SHM segment */
 shmid = shmget (sharekey, size, IPC_CREAT | SHM_MODE);
 if (shmid == -1) {
 perror ("shmget");
 return;
 }
 system ("%bpx ipcs -a");

 /* Attach SHM segment to own address space */
 buffer = (buffer_t *) shmat (shmid, (char *) NULL, 0);
 if (buffer == (buffer_t *) -1) {
 perror ("shmat");
 return;
 }
 system ("%bpx ipcs -a");

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

31

5.3.3 SHM sample program EMEA0001 page 3

 /* Initialize our application data in shared memory */
 for (i = 0; i < BUFFER_SIZE; i ++) {
 (*buffer).data [i] = i;
 }
 (*buffer).counter = -1;

 /* Detach the shared memory segment form our address space */
 rc = shmdt ((char *) buffer);
 if (rc == -1) {
 perror ("shmdt");
 return;
 }
 system ("%bpx ipcs -a");

 /* Delete permanently the shared memory segment */
 rc = shmctl (shmid, IPC_RMID, NULL);
 if (rc == -1) {
 perror ("shmctl");
 }
 system ("%bpx ipcs -a");
} /* main */

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

32

6. IPC Semaphores

Locking strategies using IPC semaphores

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

33

6.1 What is a Semaphore ?

One of the earliest forms of fixed railway signal is the semaphore

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

34

6.2 Semaphore Definition of wikipedia.org

● A semaphore, in computer science, is a protected variable (an
entity storing a value) or abstract data type (an entity grouping
several variables that may or may not be numerical) which
constitutes the classic method for restricting access to shared
resources, such as shared memory, in a multiprogramming
environment ...

● ... A counting semaphore is a
counter for a set of available
resources, rather than a
locked/unlocked flag of a
single resource...

● ... It was invented
by Edsger Dijkstra ...

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

35

6.3 IPC SEM methods

● semget - Get a Set of Semaphores
– Creates a new set of semaphores returns it's ID
– Gets the ID of an existing set of semaphoren

● semop - Semaphore Operations
– Performs semaphore operations atomically on a set of semaphores

● semctl - Semaphore Control Operations
– Get and Set semphore values
– Returns the number of waiting processes
– Obtains status informations
– Changes permissions
– Removes a set of semphores

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

36

6.4 IPC SEM sample no. 1

● Street crossing
– Rule: First comes –> first runs

Protected
Area

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

37

6.5 IPC SEM sample no. 1

● Steps

1. We need one semaphore with one 'traffic light' sem_value
2. Create or get semaphore by calling semget ()
3. If new then initialize sem_value with '1' by calling semctl ()
4. Lock with sem_op equal '-1' by calling semop ()

if sem_value is '0' then
process waits until sem_value is set to '1' by another process

endif
sem_value becomes '0'

4. Do your protected work
5. Unlock with sem_op equal '+1' by calling semop ()

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

38

6.5.1 SEM sample program EMEA0002 page 1

EMEA0002.C
#define _XOPEN_SOURCE
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#define SEM_KEY 0x00004711
#define SEM_SIZE 1
#define SEM_MODE 0666
unsigned int semkey = SEM_KEY;
int main (int argc, *argv []) {
 int semid, i, rc;
 struct sembuf semOp;

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

39

6.5.2 SEM sample program EMEA0002 page 2

 system ("%bpx ipcs -a");

 /* Get semaphore */
 semid = semget (semkey, 0, 0);

 /* If not active, create new semphore */
 if (semid == -1) {
 semid = semget (semkey, SEM_SIZE,
 IPC_CREAT | IPC_EXCL | SEM_MODE);
 if (semid == -1) {
 perror ("semget");
 return;
 }
 /* Initialize semaphore */
 rc = semctl (semid, 0, SETVAL, 1);
 if (rc == -1) {
 perror ("semctl");
 return;
 }
 }
 system ("%bpx ipcs -a");

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

40

6.5.3 SEM sample program EMEA0002 page 3

 /* Do locking */
 semOp.sem_num = 0; /* semaphore value number */
 semOp.sem_op = -1; /* lock */
 semOp.sem_flg = SEM_UNDO; /* if aborts, undo change */
 rc = semop (semid, &semOp, 1);
 if (rc != 0) {
 perror ("semop lock");
 return;
 }
 system ("%bpx ipcs -w");

 /* Do unlocking */
 semOp.sem_num = 0; /* semaphore value number */
 semOp.sem_op = +1; /* lock */
 semOp.sem_flg = SEM_UNDO; /* if aborts, undo change */
 rc = semop (semid, &semOp, 1);
 if (rc != 0) {
 perror ("semop unlock");
 return;
 }
 system ("%bpx ipcs -w");

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

41

6.5.4 SEM sample program EMEA0002 page 4

 /* Delete permanently the semaphore */
 rc = semctl (semid, 0, IPC_RMID);
 if (rc == -1) {
 perror ("shmctl");
 }
 system ("%bpx ipcs -a");
} /* main */

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

42

6.6 IPC SEM sample no. 2

● Mainroad (many read processes) and junction (write process)
– Rule: A writing processes waits until no read process is

running

Protected
Area

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

43

6.7 IPC SEM sample no. 2

● We need a shared global counter for current read processes

Protected
Area

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

44

6.8 IPC SEM sample no. 2

● Steps

1. We need one semaphore 'W' with one 'traffic light' sem_value
2. We need one semaphore 'R' with two sem_value's

● The 1st sem_value is used to protect changes of the global counter
● The 2nd sem_value is used as the counter itself

3. Create or get both semaphores by calling semget ()
4. If new then

initialize all sem_value's with '1' by calling semctl ()

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

45

6.8.1 IPC SEM sample no. 2 - Read Process

● Steps – Read process
1. Protect and increment global counter

long lockRead () {
 struct sembuf semOp [2];
 long rc;
 semOp [0].sem_num = 0;
 semOp [0].sem_op = -1; /* lock */
 semOp [0].sem_flg = SEM_UNDO;
 semOp [1].sem_num = 1;
 semOp [1].sem_op = +1; /* read lock count ++ */
 semOp [1].sem_flg = SEM_UNDO;

 rc = semop (semid_R, &semOp [0], 2); /* lock read now */
 if (rc != 0) {
 printf ("lockRead(1): rc = %d\n", rc);
 return (8);
 }

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

46

6.8.2 IPC SEM sample no. 2 - Read Process

 /* Start of protected resource read counter */
 if (semctl (semidr, 1, GETVAL) == 2) {
 semOp [0].sem_flg = 0;
 rc = semop (semid_W, &semOp [0], 1); /* lock write now */
 if (rc != 0) {
 printf ("lockRead(2): rc = %d\n", rc);
 return (8);
 }
 }
 /* End of protected resource read counter */
 semOp [0].sem_op = 1; /* unlock */
 semOp [0].sem_flg = SEM_UNDO;
 rc = semop (semid_R, &semOp [0], 1); /* unlock read now */
 if (rc != 0) {
 printf ("lockRead(3): rc = %d\n", rc);
 return (8);
 }
 return (0);
} /* lockRead */

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

47

6.8.3 IPC SEM sample no. 2 - Read Process

● Steps – Read process
2. Do your read operation
3. Protect and decrement global counter

long unlockRead () {

 struct sembuf semOp [2];
 long rc;
 semOp [0].sem_num = 0;
 semOp [0].sem_op = -1; /* lock */
 semOp [0].sem_flg = SEM_UNDO;
 semOp [1].sem_num = 1;
 semOp [1].sem_op = -1; /* read lock count -- */
 semOp [1].sem_flg = SEM_UNDO;

 rc = semop (semid_R, &semOp [0], 2); /* lock read now */
 if (rc != 0) {
 printf ("unlockRead(1): rc = %d\n", rc);
 return (8);
 }

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

48

6.8.4 IPC SEM sample no. 2 - Read Process

 /* Start of protected resource read counter */
 semOp [0].sem_op = 1; /* unlock */
 if (semctl (semidr, 1, GETVAL) == 1) {
 semOp [0].sem_flg = 0;
 rc = semop (semid_W, &semOp [0], 1); /* unlock write */
 if (rc != 0) {
 printf ("unlockRead(2): rc = %d\n", rc);
 return (8);
 }
 }
 /* End of protected resource read counter */
 semOp [0].sem_flg = SEM_UNDO;
 rc = semop (semid_R, &semOp [0], 1); /* unlock read now */
 if (rc != 0) {
 printf ("unlockRead(3): rc = %d\n", rc);
 return (8);
 }
 return (0);
} /* unlockRead */

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

49

6.8.5 IPC SEM sample no. 2 – Write Process

● Steps – Write process

1. Lock semaphore 'W'
long lockWrite () {
 struct sembuf semOp;
 long rc;
 semOp.sem_num = 0;
 semOp.sem_op = -1; /* lock */
 semOp.sem_flg = SEM_UNDO;

 rc = semop (semid_W, &semOp, 1); /* lock write now */
 if (rc != 0) {
 printf ("lockWrite: rc = %d\n", rc);
 return (8);
 }
 return (0);
} /* lockWrite */

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

50

6.8.6 IPC SEM sample no. 2 – Write Process

● Steps – Write process

2. Do your write operation
3. Unlock semaphore 'W'

long unlockWrite () {
 struct sembuf semOp;
 long rc;
 semOp.sem_num = 0;
 semOp.sem_op = 1; /* unlock */
 semOp.sem_flg = SEM_UNDO;

 rc = semop (semid_W, &semOp, 1); /* unlock write now */
 if (rc != 0) {
 printf ("unlockWrite: rc = %d\n", rc);
 return (8);
 }
 return (0);
} /* unlockWrite */

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

51

7. Your Own IPC Utility

● __getipc - Query Interprocess Communications
– The __getipc() function provides means for obtaining information about the status of

interprocess communications (IPC) resources, message queues, semaphores and
shared memory.

EMEA0003.C
#define _XOPEN_SOURCE
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/ipc.h>
#include <sys/__getipc.h>
#include <sys/shm.h>
#include <sys/sem.h>

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

52

7.1 Your Own IPC Utility

int main (int argc, *argv []) {
 long token = 0;
 long rc = 0;
 IPCQPROC buffer;
 int semval;
 printf ("... analyzing IPCS records ...\n");
 do {
 rc = __getipc (token, &buffer, sizeof (buffer), IPCQALL);
 token = rc;
 if (token == 0) {
 break;
 }

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

53

7.2 Your Own IPC Utility

 if (memcmp (buffer.shm.ipcqtype, "ISEM", 4) == 0) {
 printf ("\nSEMAPHORE: Key = %8.8p, ID = %d\n\n",
 buffer.sem.ipcqkey, buffer.sem.ipcqmid);
 /* semval */
 semval = semctl (buffer.sem.ipcqmid, 0, GETVAL);
 printf ("Actual value (0) = %d\n", semval);
 semval = semctl (buffer.sem.ipcqmid, 1, GETVAL);
 printf ("Actual value (1) = %d\n\n", semval);
 }
 else if (memcmp (buffer.shm.ipcqtype, "ISHM", 4) == 0) {
 printf ("\nSHARED MEMORY: Key=%8.8p, Id=%d\n\n",
 buffer.shm.ipcqkey, buffer.shm.ipcqmid);
 printf (" USE count (attach - detach) = %10d\n",
 buffer.shm.ipcqacnt);
 }
 } while (rc != 0);
} /* main */

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

54

8. IPC Documentation

Documentation

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

55

8.1 IPC and XL C/C++

● Documentation
– z/OS XL C/C++ Run-Time Library Reference

● Dokument Number SA22-7821-09
● Program Number 5694-A01

– http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/edclb180/CCONTENTS

– See
● Chapter 2,

sys/ipc.h, sys/sem.h, sys/shm.h and sys/__getipc.h
● Chapter 3,

shm*, sem* and __getipc

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/edclb180/CCONTENTS

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

56

8.2 IPC and Assembler Unix Services

● Documentation
– z/OS UNIX System Services

Programming: Assembler Callable Services reference
● Dokument Number SA22-7803-10
● Program Number 5694-A01

– http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/bpxzb180/CCONTENTS

– See
● Chapter 2,

sem*, shm* and w_getipc
● Appendix B,

BPXYIPCP, BPXYMODE, BPXYSEM and BPXYIPCQ

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/bpxzb180/CCONTENTS

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

57

9. Presentation Download

You can download this presentation here:
http://www.defobonn.com/content/view/41/61/lang,en/

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

58

10. Your Contact

Detlef Dewitz

DEFObonn GmbH
Argelanderstr. 183
53115 Bonn
Germany

Phone+49 (0)228 9146013
Fax +49 (0)228 215180
Web http://www.defobonn.com
email D.Dewitz@defobonn.de

IMS Symposium 2008, Bad Soden 10.-13.11.2008
I33 Application Data Sharing with z/OS Shared Memory
© Detlef Dewitz, Bonn, 2008

59

11. Discussion

Questions ?
Comments ?

	Title
	Folie 2
	1. Needs
	1.1 Live monitoring
	1.2 IMS workflow
	1.3 Web application
	1.4 Global repository
	1.5 IMS database cache
	1.5.1 Preconditions
	1.5.2 Objectives
	2. Problems
	2.1 Problem S0C4
	2.2 APF Authorization
	3. IPC concept
	3.1 IPC wikipedia
	3.2 IPC on z/OS
	3.3 IPC diagram
	4. IPC tools
	4.1 Clist BPX
	4.1.1 BPX sample
	4.1.2 Clist BPXSPOOL
	4.2 OMVS ipcs
	4.3 OMVS ipcrm
	4.4 OMVS ps
	5. IPC Shared Memory
	5.1 SHM diagram
	5.2 SHM methods
	5.3 SHM steps
	5.3.1 SHM pgm 1
	5.3.2 SHM pgm 2
	5.3.3 SHM pgm 3
	6. IPC Sempahores
	6.1 SEM railway
	6.2 SEM wikipedia
	6.3 SEM methods
	6.4 SEM sample 1
	6.5 SEM sample 1
	6.5.1 SEM pgmA 1
	6.5.2 SEM pgmA 2
	6.5.3 SEM pgmA 3
	6.5.4 SEM pgmA 4
	6.6 SEM sample 2
	6.7 SEM sample 2
	6.8 SEM sample 2
	6.8.1 SEM read
	6.8.2 SEM read
	6.8.3 SEM read
	6.8.4 SEM read
	6.8.5 SEM write
	6.8.6 SEM write
	7. Own utility
	7.1 Own utility 2
	7.2 Own utility 3
	8. IPC Documentation
	8.1 IPC and XL C/C++
	8.2 IPC and Assembler Unix Services
	9. Download Area
	10. Contact
	11. Discussion

